Dopamine Signaling in C. elegans Is Mediated in Part by HLH-17-Dependent Regulation of Extracellular Dopamine Levels

نویسندگان

  • Chaquettea M. Felton
  • Casonya M. Johnson
چکیده

In Caenorhabditis elegans, the dopamine transporter DAT-1 regulates synaptic dopamine (DA) signaling by controlling extracellular DA levels. In dat-1(ok157) animals, DA is not taken back up presynaptically but instead reaches extrasynpatic sites, where it activates the dopamine receptor DOP-3 on choligeneric motor neurons and causes animals to become paralyzed in water. This phenotype is called swimming-induced paralysis (SWIP) and is dependent on dat-1 and dop-3. Upstream regulators of dat-1 and dop-3 have yet to be described in C. elegans. In our previous studies, we defined a role for HLH-17 during dopamine response through its regulation of the dopamine receptors. Here we continue our characterization of the effects of HLH-17 on dopamine signaling. Our results suggest that HLH-17 acts downstream of dopamine synthesis to regulate the expression of dop-3 and dat-1. First, we show that hlh-17 animals display a SWIP phenotype that is consistent with its regulation of dop-3 and dat-1. Second, we show that this behavior is enhanced by treatment with the dopamine reuptake inhibitor, bupropion, in both hlh-17 and dat-1 animals, a result suggesting that SWIP behavior is regulated via a mechanism that is both dependent on and independent of DAT-1. Third, and finally, we show that although the SWIP phenotype of hlh-17 animals is unresponsive to the dopamine agonist, reserpine, and to the antidepressant, fluoxetine, hlh-17 animals are not defective in acetylcholine signaling. Taken together, our work suggests that HLH-17 is required to maintain normal levels of dopamine in the synaptic cleft through its regulation of dop-3 and dat-1.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dopamine- induced hypophagia is mediated via NMDA and mGlu1 receptors in chicken

Background: Feeding behavior is regulated by a complex network which interacts via diverse signals from central and peripheral tissues. It is known dopaminergic and glutamatergic systems have crucial role on food intake regulation but scarce reports exist on their interaction in appetite regulation in broilers. OBJECTIVES: The present study was designed to examine the role of glutamatergic syst...

متن کامل

Comparison of the effect of iron oxide nanoparticles and bulk on the memory and associated alterations in dopamine and serotonin levels in the hippocampus of adult male rats

Introduction: With the increasing development of nanotechnology, nanomaterials are used instead of conventional compounds. One of these nanomaterials that have many applications in the biomedical field, is iron oxide (Fe2O3) nanoparticles and there is not much research on its effects on the physiological features. So in this research, effect of iron oxide nanoparticles on short and long-term...

متن کامل

Dopamine Signaling Regulates Fat Content through β-Oxidation in Caenorhabditis elegans

The regulation of energy balance involves an intricate interplay between neural mechanisms that respond to internal and external cues of energy demand and food availability. Compelling data have implicated the neurotransmitter dopamine as an important part of body weight regulation. However, the precise mechanisms through which dopamine regulates energy homeostasis remain poorly understood. Her...

متن کامل

Dopamine suppresses octopamine signaling in C. elegans: possible involvement of dopamine in the regulation of lifespan

Amine neurotransmitters, such as dopamine, serotonin, and noradrenaline, play important roles in the modulation of behaviors and metabolism of animals. InC. elegans, it has been shown that serotonin and octopamine, an invertebrate equivalent of noradrenaline, also regulate lifespan through a mechanism related to food deprivation-mediated lifespan extension. We have shown recently that dopamine ...

متن کامل

Dopamine Modulates Acetylcholine Release via Octopamine and CREB Signaling in Caenorhabditis elegans

Animals change their behavior and metabolism in response to external stimuli. cAMP response element binding protein (CREB) is a signal-activated transcription factor that enables the coupling of extracellular signals and gene expression to induce adaptive changes. Biogenic amine neurotransmitters regulate CREB and such regulation is important for long-term changes in various nervous system func...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2014